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Abstract. The hyperbolic secant memory function recently proposed by Tankeshwar and Pathak 
has been analysed using the recurrence relations formulation. In panicular, the relevant Hilbert 
space structure for this memory function has been deduced and ampared with those of others 
obtained exactly from Hermitian many-body models. The realizability of the proposed memory 
function in conventional many-body models is further discussed. 

1. Introduction 

The memory function is a fundamental quantity needed to describe non-equilibrium 
behaviour in fluids. For a system with a realistic potential it has not been possible to obtain 
an exact closed-fom memory function from first principles. One way to circumvent this 
difficulty is to seek functions with which to represent the memory function approximately. 
These functions mast necessarily satisfy at least some essential properties of the memory 
function. 

In an interesting article recently, Tankeshwar and Pathak [ I ]  have proposed a hyperbolic 
secant as a memory function. This function satisfies several basic properties of a memory 
function. Hence, it is at once plausible but in addition, it has the advantage of being simple, 
flexible and convenient for dynamical analysis as these workers have demonstrated. Rather 
persuasive also are their results, showing good agreement with those of purely numerical 
origin. 

Tankeshwar and Pathak contend that a hyperbolic secant memory is not without some 
physical basis at least macroscopically. It would nevertheless be very remarkable if a 
single function such as the hyperbolic secant could incorporate even approximately all the 
complexities of the memory in a fluid [2]. Hence, it would seem reasonable to examine 
this ‘ersarz’ memory function by microscopic theory to see what it implies both physically 
and analytically. There might possibly be some limitations not readily apparent. 

Microscopically, the hyperbolic secant memory function has a few attractive features 
as well. It is time-reversal invarianf which is required in a Hermitian many-body system. 
At short times it appears oscillatory, but at long times it decays exponentially. It is an 
admissible function as we shall see but it does not allow the slow decay observed in other 
Hermitian many-body models [3]. 

The main purpose of this comment is to show the microscopic conditions necessary for 
this memory function and to see whether they might be realizable. In recent years there 
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have been several exact calculations of the relaxation function and the memory function for 
certain solvable models of quantum fluids and lattice spins (for reviews, see [4]; see also 
[5,6]). These results have indicated the existence of a variety of possible time evolutions 
and have provided an understanding of their microscopic origin. 

These developments have been brought about in part by the recurrence relations 
approach to Mori’s original memory function formalism 171. Central to the recurrence 
relations approach is the realized Hilbert space of a dynamical variable (e.g. the velocity 
operator in the work of Tankeshwm and Pathak), spanned by a complete set of basis vectors. 
These basis vectors satisfy a recurrence relation and contain microscopic information in a 
precisely defined way. There are two structural properties which are essential to generating 
time evolution: the dimensionality and the hypersurface. The dimensionality of a realized 
space is usually not finite for a many-body model with infinite degrees of freedom. (It 
may on occasion not be infinite owing for example to localization.) The hypersurface is 
a measure of the norm of the basis vectors. The time evolution of a dynamical variable 
means the delineation of a trajectory on the surface of this Hilbert space, i.e. a particular 
structure and a particular time evolution are in effect equivalent. Given a particular time 
evolution such as hyperbolic secant, it is pertinent to ask what is the microscopic condition 
to which to ascribe. 

2. Recurrence relations formalism 

The recurrence relations formulation is briefly summarized here to analyse the hyperbolic 
secant memory function of Tankeshwar and Pathak If A(t) is a dynamical variable at time 
t for a model defined by a Hamiltonian H, the proper equation of motion is the generalized 
Langevin equation (GLE) 

* + M ( t  - t‘)A(f’) dt‘ = F ( t )  
dt 

where M is the memory function and F is the random force [8]. Tankeshwar and Path& 
have started with a scalar version of (1). The formal solution of A(t) according to the 
recurrence relations formalism is as follows [7]: A(f) is a vector in a &dimensional Hilbert 
space S, spanned by basis vectors fa, fl. . . . , fd-1 where ( f v ,  f v , )  = 0 if U‘ # v .  Hence, 

where {a,) is a family of real functions, e.g. ~ ( t )  = (A@), fo)/(fo, fo); ay is sometimes 
referred to as the relaxation function. The dimensionality d is model dependent. 

The distinguishing feature of this approach is that both {f”] and (a,) satisfy unique 
recurrence relations: 

fv+l = fv + Aufv-l U 2 0  ( 3 d  

(3b) A u + ~ a v + ~ ( t )  = -;av(t) +av-i(t) 

where A, = (f”, fv)/(fU-l, f ~ ) ,  jv  = i[H, f”], f-1 s 0 and a-1 0. By exercising 
the allowed freedom, e.g. fo = A, we can generate other f v  and A, from (3a). If a0 were 

d 
2 0 
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given, we could similarly generate other a, and AV from (3b). However, it is not given and 
it must be determined from a known set of AV, 

The random force F(t)  is a vector in a subspace SI, spanned by f l  , fz, . . . , fd-1: 

where [bv} is another family of real functions satisfying the same recurrence relation (3b) 
but in the subspace SI. The memory function follows from (4) at once: 

M ( t )  MI@) = (fi[tl, fi)l(fo, fo) = Aibi(t). (5) 
The time evolution of F(t)  f l  [t] is itself also governed by the GLE (1). If A(r) is replaced 
by fl[t] therein, it introduces a new random force fz[t] and a new memory function MZ(t). 
Then fz[t] is a vector in a subspace SZ, spanned by fz, f 3 ,  , ,., fd-1: 

where (cut also satisfy the same recurrence relation (36) in the subspace S2. The memory 
function is 

(7) 
Evidently we can continue this process until the smallest subspace is reached if d is 

finite or indefinitely if d is not finite. There is an invariant relationship between these spaces. 
Thus the random farce and the memory function in one space, for example, can be formally 
viewed as the dynamical variable and the relaxation function in its subspace. The invariant 
relationship is most clearly indicated by the Laplace transforms. Let &(z)  = La&), where 
L is the Laplace transform operator. Then, by (3b), 

M z ( t )  = (fz[tl, fdl(f1,  f i )  = Azcz(f) 

z&(z) + ai ai(^) = 1 .  

&o(z) = [Z + A i & ( ~ ) l - ’  

(84 

(8b) 

Hence, 

etc. These and similar relationships imply that 

i.e. a continued fraction. 
If (A”] is calculated from (3a), &(z) may be determined from (9). Then ao(t) can 

be found from iro(z) by an inverse transform. The recurrence relation (3b) is sufficient to 
determine (a&)]. Also 61(z) can be found from (Sc) and bl(r) by a convolution and so on. 
If the time evolution is determined in this manner, we shall term it canonical. A canonically 
obtained relaxation function is perforce an ndmissible function [7]. 
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3. Analysis of the memory function of Tankeshwar and Pathak 

Given the proposition M ( t )  = secht, we can use (3b) to construct the Hilbert space structure 
immediately. Since the memory function in the space S 3 SO is also the relaxation function 
in the subspace 81 by the invariant relationship, the analysis can be carried out wholly in 
this subspace regarding secht as the relaxation function therein. However, it is simpler to 
regard it as the relaxation function in the space & and thereby to avoid relabelling. This 
translation does not affect our intended analysis. 

Then, by repeated applications of (3b), we obtain a,@) = 
(tanh”tsechf)/v! and A” = U* ,  v 2 1, d = 00. It is important to recognize that secht is 
an admissible function unlike exp(-r) for example (see appendix). This particular infinite- 
dimensional hypersurface can also be obtained from a continued-fraction representation (9) 
due to Stieltjes 191: 

M H Lee eta1 

Let a&) = sechi. 

&(z) = lmerp(-zt)sechtdt Rez > 0 

Before analysing the above result, hre shall list for comparison three representative 

(a) A, = 1, v 2 1; d = 05. This structure occurs in the ZD electron gas and in the 

results of infinite dimensions obtained canonically. 

classical harmonic oscillator chain [lo, 11,171: 

(b) A” = v,  U > 1; d = 00. This structure occurs in the spin van der Waals model [I21 
and in the spin XY chain 1131: 

(c) A V  = vz/(4v2 - l), U > 1; d = 00. This structure occurs in the 3D electron gas 
[14]: 

a&) = jo( t )  &(z) =tan-’ z-’. 

Observe that all the singularities of a&), whether isolated poles or branch points, lie 
on the imginury axis of z. If these structures are perturbed (e.g. by adding an impurity to 
a harmonic oscillator chain (see (a))) [ I l l ,  additional isolated poles occur which are also 
found on the imaginary axis, corresponding to resonant frequencies. (Recall that L = io+O,  
where o is the frequency.) In all exact results obtained canonically [4], there have been no 
exceptions. 

Now let us examine the singularities of &(z) when A V  = U’, U > 1, corresponding to 
&(I) = secht. It is convenient to write [7,15] 

&dZ) = Q(Z) /P( z )  = Iim (det[Q~(z)l/det[P~(z)l) (11) 
N+W 



3191 Comment ~~ 

and to look for the zeros of P(z) ,  where P N ( z )  is a tridiagonal matrix: 

z -1i 
-1i z -2i 

-2i z -3i 
-3i ’.. 

. -Ni 
-Ni z 

QN(z )  is also a similar hidiagonal matrix but not needed here since we may safely assume 
that Q ( z )  is regular. 

The zeros of P ( z )  are the eigenvalues of the above matrix as N -+ w. They may be 
obtained by a method due to Lee er al [16] based on a generating function. The eigenvalues 
are z = -1, -3, -5,. . .. We can easily verify the above result as follows: 

A&)= e x p ( - z t ) s e c h t d z = f [ @ ( d z + 9 ) - ~ ( a z + t ) ]  R e z >  -1 (13) dW 
where @ is the logarithmic derivative of the r function. @(z) is meromorphic with simple 
poles at z = 0, -1, -2 . .  . .. Also Re;lo(z = iw + 0) = (n/2) sech(4no). From (13), we 
can obtain the normalized dynamic structure factor s(o), where w is the frequency: 

where h = 1 and ,3 is the inverse temperature. 
The properties of the subspace SI may be determined from (8b) and (9) as follows: 

Note that h1(z  = 0) = 2/n. Also, 

bl(t + 0) = 1 - 2t2 + ( f ) t 4  - . . . . (164 

By the convolution theorem (see (Sc)), 

bl(t --f 00) = (2/n)tanhtsecht E (l/a)exp(-t). U6b) 

We can determine cz and its family similarly. In this manner, we can completely characterize. 
all the subspaces SI, SZ. . . . from knowledge of the space &. 

The above picture for the structure A, = U’, U > 1, is generalizable slightly by taking 
a&) = secd t ,  k = 1.2, . . .. Then, from (3b), we obtain a&) = (tanh’ t se& t ) / u ! ,  
A, = u(u + k - l), U > 1, and d = w. The eigenvalues of P,&) whose off-diagonal 
elements are - i a ,  - i m ,  - i m . .  . . are z = -2m - k, m = 0,1,2, . . ., if 
N - t w .  
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4. Concluding remarks 

The singularities of &(z)  when A V  = U’, U 2 1, are real (i.e. imaginary frequencies). They 
are isolated poles, all lying on the negative real axis of z. This behaviour is unaltered if 
AV = u(u + k - I), U > I ,  for k = 1.2, . . .. This is in contrast with the behaviour of the 
physicaI singuIarities in the three examples (a)+) of section 3 as well as in all other known 
solutions obtained canonically [4]. For all these the singularities lie on the imaginary axis of 
z ,  corresponding to real frequencies. Apparently there is a fundamental difference between 
the sech t relaxation function and the canonically obtained relaxation functions. Since all of 
them including the hyperbolic secant (see appendix) are admissible functions, the difference 
can only be bound to the question of realizabilify. 

Let us therefore Iook at this question more closely. The class of these canonically 
obtained a&), e.g. a,(?) = [t” exp(-;t’)]/u!, which represent the structure of AV = v, 
U > 1, are all entire functions of f .  However, the functions a,(?) = (tanh”tsecht)/u!. 
which represent the structure of A” = U’, U > 1, are not. This is further illuminated if 
viewed from a growth process where we define an exponent x by AV - v”, U -+ 00. It has 
been argued that, if x > 2, there is infinite growth order and the relaxation function is not 
entire [S, 181. Not coincidentally, x = 2 for a&) = secht, but x c 2 for the canonically 
obtained a,(?) (see (axe) of section 3). In this growth sense the hyperbolic secant is at an 
onset of infinite growth, whereas the others are in the domain of finite growth. 

Can the Hilbert space structure of A” = vz, U > 1, be realized in many-body models 
at all? Given the analytical constraint for this strucme, it does not seem likely if models 
have smooth potentials, but it is possible if models have non-smooth potentials such as 
a hard-sphere potential. That exactly the same analytical property should also occur in a 
quantum hard-sphere model is highly suggestive [16]. In these models this Hilbert space 
structure may very well be realized. 

Finally let us now look at a hyperbolic secant memory more physically. We observed at 
the outset that a hyperbolic secant memory has no slow decay. It is not dissimilar to what 
i s  seen in stochastic models, where memories tend to become lost after short times. Indeed 
we expect to find this kind of dynamical behaviour in models with contact potentials, for 
which a hyperbolic secant memory should give a good account. Slow decay, however, does 
exist in more realistic models for fluids and has been observed in fluids. To be viable for 
fluids, a hyperbolic secant memory would need to be supplemented with slowly vanishing 
components. Otherwise their dynamical behaviour especially in low-frequency regimes 
would be poorly accounted for by a hyperbolic secant memory alone. 

M H Lee et a1 
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Appendix. Admissibility of secht 

In the recurrence relations formalism [7] a function is admissible as the relaxation function 
(or the memory function) if it satisfies the Bessel equality: 

“=O k= 1 
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This condition can be used to show that a purely exponential function is inadmissible [3J. 
One can prove that secht is admissible by satisfying (Al).  If u&) = secht, 

(4 Z A V  = v 

and 

tanh" t sech t 
U !  

U " ( t )  = 

Let us write for simplicity T = tanht and C = cosht = (secht)-'. Then, the left-hand 
side of (AI) is 
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